Как обозначается тэс на карте. Практическая работа:"Обозначение на контурной карте крупнейших электростанций России". Крупнейшие тепловые электростанции России: список

Практическая работа.

Ход работы:

Практическая работа.

Обозначение на контурной карте крупнейших электростанций России

Ход работы:

1. Используя карты атласа, на контурной карте России обозначьте:

Крупнейшие тепловые (Берёзовскую, Заинскую, Ириклинскую, Киришскую, Конаковскую, Костромскую, Нижневартовскую, Новочеркасскую, Пермскую, Рефтинскую, Рязанскую, Ставропольскую, Сургутскую ГРЭС),

Атомные (Балаковскую, Белоярскую, Билибинскую, Димитровградскую, Курскую, Ленинградскую, Нововоронежскую, Обнинскую, Ростовскую, Смоленскую, Тверскую АЭС)

Крупнейшие гидроэлектростанцииРоссии (Братскую, Волгоградскую, Волжскую, Красноярскую, Саянскую, Усть-Илимскую ГЭС) и подпишите их названия;

2. Синим цветом заштрихуйте экономические районы, в структуре производства электроэнергии которых преобладают ГЭС, а красным цветом - АЭС и подпишите их названия.

3. Какие факторы размещения имеют ТЭС, ГЭС и АЭС?

Не забудьте подписать названия электростанций!

Практическая работа.

Обозначение на контурной карте крупнейших электростанций России

Ход работы:

1. Используя карты атласа, на контурной карте России обозначьте:

Крупнейшие тепловые (Берёзовскую, Заинскую, Ириклинскую, Киришскую, Конаковскую, Костромскую, Нижневартовскую, Новочеркасскую, Пермскую, Рефтинскую, Рязанскую, Ставропольскую, Сургутскую ГРЭС),

Атомные (Балаковскую, Белоярскую, Билибинскую, Димитровградскую, Курскую, Ленинградскую, Нововоронежскую, Обнинскую, Ростовскую, Смоленскую, Тверскую АЭС)

Крупнейшие гидроэлектростанцииРоссии (Братскую, Волгоградскую, Волжскую, Красноярскую, Саянскую, Усть-Илимскую ГЭС) и подпишите их названия;

2. Синим цветом заштрихуйте экономические районы, в структуре производства электроэнергии которых преобладают ГЭС, а красным цветом - АЭС и подпишите их названия.

3. Какие факторы размещения имеют ТЭС, ГЭС и АЭС?

Не забудьте подписать названия электростанций!

Практическая работа.

Обозначение на контурной карте крупнейших электростанций России

Ход работы:

1. Используя карты атласа, на контурной карте России обозначьте:

Крупнейшие тепловые (Берёзовскую, Заинскую, Ириклинскую, Киришскую, Конаковскую, Костромскую, Нижневартовскую, Новочеркасскую, Пермскую, Рефтинскую, Рязанскую, Ставропольскую, Сургутскую ГРЭС),

Атомные (Балаковскую, Белоярскую, Билибинскую, Димитровградскую, Курскую, Ленинградскую, Нововоронежскую, Обнинскую, Ростовскую, Смоленскую, Тверскую АЭС)

Крупнейшие гидроэлектростанцииРоссии (Братскую, Волгоградскую, Волжскую, Красноярскую, Саянскую, Усть-Илимскую ГЭС) и подпишите их названия;

2. Синим цветом заштрихуйте экономические районы, в структуре производства электроэнергии которых преобладают ГЭС, а красным цветом - АЭС и подпишите их названия.

3. Какие факторы размещения имеют ТЭС, ГЭС и АЭС?

Не забудьте подписать названия электростанций!

Условные обозначения на тепловых схемах ТЭС и АЭС регламентируются государственными и отраслевыми стандартами.

В Приложении 1 приведены наиболее часто встречающиеся на тепловых схемах условные обозначения трубопроводов, арматуры, основного и вспомогательного оборудования ТЭС и АЭС. С другими обозначениями можно ознакомиться в учебно-методической и справочной литературе, список которой расположен в конце данного учебного пособия.

ПРИЛОЖЕНИЕ 1

Условные обозначения на тепловых схемах

Пар свежий (толщина линий 0,8-1,5 мм)

Пар промперегрева (0,8-1,5 мм)

Пар регулируемых отборов и противодавления (0,8-1,5 мм)

Пар нерегулируемых отборов (0,8-1,5 мм)

Паровоздушная смесь (0,2-1,0 мм)

Вода питательная (0,2-1,0 мм)

Конденсат (0,2-1,0 мм)

Вода техническая, циркуляционная (0,2-1,0 мм)

Вода сетевая и подпиточная (0,2-1,0 мм)

Размер трубы (наружный диаметр и толщина стенки, мм)

Материал трубопровода

Параметры пара (давление, кгс/см 2 , температура, °С)

1

Номер отбора пара

Трубопроводы

Перекрещивание трубопроводов (без соединения)

Соединение трубопроводов

Арматура

Вентиль (клапан) запорный

Вентиль (клапан) регулирующий

Клапан обратный (движение рабочего тела

возможно от белого треугольника к черному)

Клапан предохранительный

Клапан дроссельный

Клапан редукционный (вершина треугольника

направлена в сторону повышенного давления)

Задвижка

Вентиль с электроприводом переменного тока

Редукционно-охладительная установка

Основное и вспомогательное оборудование



Цилиндр турбины однопоточный или газовая турбина (здесь и далее m = 10, 20, 30 или 40 мм в зависимости от размера тепловой схемы)



Турбопривод

Котел паровой или водогрейный

Пароперегреватель первичный или промежуточный (газовый)

Экономайзер

Компрессор

Эжектор пароструйный или водоструйный


Конденсатор

Смешивающий теплообменник

Теплообменник (подогреватель) поверхностный


Подогреватель поверхностный со встроенными

поверхностями нагрева





Деаэратор

Тепловой потребитель

Турбонасос

Испаритель турбоустановки

ПРИЛОЖЕНИЕ 2

Перечень сокращений

АЗ – аварийная защита; активная зона (ядерного реактора)

АСПТ, АСТ – атомная станция промышленного теплоснабжения, атомная

станция теплоснабжения

АСУТП – автоматизированная система управления тепловыми процессами

АТЭЦ – атомная теплоэлектроцентраль

АЭС – атомная электрическая станция

БН – бустерный насос

БОУ – блочная обессоливающая установка

БРОУ, БРУ – быстродействующая редукционно-охладительная,

редукционная установка

БС – барабан-сепаратор

БЩУ – блочный щит управления

ВВЭР – водо-водяной энергетический реактор

ВС – верхняя ступень (сетевого подогревателя)

ВСП – верхний сетевой подогреватель

ГАВР – гидразин-аммиачный водный режим

ГАЭС – гидроаккумулирующая электростанция

ГеоТЭС – геотермальная теплоэлектростанция

ГеЭС – гелиоэлектростанция (солнечная электростанция)

ГЗЗ – главная запорная задвижка

ГОСТ – государственный стандарт

ГОЭЛРО – государственный план электрификации России (1920 г.)

ГП – генеральный план (электростанции)

ГРП – газораспределительный пункт

ГРЭС – государственная районная электростанция

ГТ, ГТД, ГТУ, ГТУ-ТЭЦ, ГТЭ – газовая турбина, газотурбинный двигатель,

газотурбинная установка, ТЭЦ с ГТУ,

газотурбинная электростанция

гут – грамм условного топлива

ГЦК – главный циркуляционный контур

ГЦН – главный циркуляционный насос

ГЩУ – главный щит управления

ГЭС – гидроэлектростанция

Д - деаэратор

ДВ – дутьевой вентилятор

ДВД – деаэратор высокого давления

ДИ – деаэратор испарителя

ДН – дренажный насос

ДНД – деаэратор низкого давления

ДПТС – деаэратор подпитки теплосети

ДС – дымосос

ДТ - дымовая труба

ЗРУ – закрытое распределительное устройство

ЗУ – золоуловитель

ЗШО, ЗШУ – золошлакоотвал, золошлакоудаление

И - испаритель

К – конденсатор

КЗ – короткое замыкание

КИ – конденсатор испарителя

КИУМ – коэффициент использования установленной мощности

КМПЦ – контур многократной принудительной циркуляции

КН – конденсатный насос

КНС – насос конденсата сетевых подогревателей

КО – конденсатоочистка; конденсатоотводчик; компенсатор объема

КПД – коэффициент полезного действия

КПТ – конденсатно-питательный тракт

КПТЭ – комбинированное производство тепловой и электрической энергии

КТ – конденсатный тракт

КТЦ – котлотурбинный цех (электростанции)

КУ – котельная установка; котел-утилизатор

КЦ – котельный цех (электростанции)

КЭС – конденсационная электростанция

ЛЭП – линия электропередачи

МАГАТЭ – Международное агентство по атомной энергии

МБ – материальный баланс

МГДУ – магнитогидродинамическая установка

МИРЭК, МИРЭС – Мировая энергетическая конференция, Мировой

энергетический совет

МПА – максимальная проектная авария (на АЭС)

НВИЭ – нетрадиционные и возобновляемые источники энергии

НКВР – нейтрально-кислородный водный режим

НОК – насос обратного конденсата

НС – нижняя ступень (сетевого подогревателя)

НСП – нижний сетевой подогреватель

ОВ – охлаждающая вода; очищенная вода; охладитель выпара (деаэратора)

ОВК – объединенный вспомогательный корпус

ОД – охладитель дренажа

ОК – обратный конденсат; обратный клапан

ОП – охладитель продувки

ОРУ – открытое распределительное устройство

ОСТ – отраслевой стандарт

ОУ – охладительная установка; охладитель уплотнений

ОЭ – основой эжектор

ПВ – питательная вода

ПВД – подогреватель высокого давления

ПВК – пиковый водогрейный котел

ПВТ – пароводяной тракт

ПГ - парогенератор

ПГУ – парогазовая установка; парогенерирующая установка

ПДК – предельно допустимая концентрация

ПЕ – перегреватель свежего пара

ПК – предохранительный клапан; пиковый котел

ПКВД, ПКНД – паровой котел высокого, низкого давления

ПН – питательный насос

ПНД - подогреватель низкого давления

ПО - пароохладитель

ПП – промежуточный пароперегреватель

ППР – паропреобразователь; планово-предупредительный ремонт

ПТ - паровая турбина; паровой тракт; подготовка топлива

ПТС – принципиальная тепловая схема

ПТУ – паротурбинная установка

ПУ – подогреватель уплотнений

ПХ – паровая характеристика

ПЭ – подогреватель эжекторов; пусковой эжектор

ПЭН – питательный электронасос

Р – расширитель; реактор (ядерный)

РАО – радиоактивные отходы

РАО «ЕЭС России» - Российское открытое акционерное общество

энергетики и электрификации «Единая

электроэнергетическая система России»

РБМК – реактор большой мощности канальный (кипящий)

РБН – реактор на быстрых нейтронах

РВП – регенеративный воздухоподогреватель

РОУ – редукционно-охладительная установка

РП – регенеративный подогреватель

РТН – реактор на тепловых нейтронах

РТС – развернутая (полная) тепловая схема

РУ – редукционная установка; реакторная установка

РЦ – реакторный цех (атомной электростанции)

С - сепаратор

САОЗ – система аварийного охлаждения зоны (ядерного реактора)

СВО, СГО – спецводоочистка, спецгазоочистка (на АЭС)

СЗЗ – санитарно-защитная зона

СК – стопорный клапан

СКД, СКП – сверкритическое давление, сверхкритические параметры

СМ - смеситель

СН – сетевой насос

СП – сетевой подогреватель

СПП – сепаратор-промпароперегреватель

СТВ – система технического водоснабжения

СУЗ – система управления и защиты (ядерного реактора)

СХТМ – система химико-технологического мониторинга

СЭС – солнечная электростанция

Т – турбина

ТБ – тепловой баланс; техника безопасности

ТВ – техническая вода

ТВД – турбина высокого давления

ТВС, твэл – тепловыделяющая сборка, тепловыделяющий элемент

ТГ - турбогенератор

ТГВТ – топливно-газо-воздушный тракт

ТГУ – турбогенераторная установка

ТК – теплофикационный пучок конденсатора турбины; технологический

канал (ядерного реактора); топливная кассета (для АЭС)

ТН – теплоноситель

ТНД – турбина низкого давления

ТО - теплообменник

ТП – тепловой потребитель; турбопривод (насоса)

ТПН – питательный насос с турбоприводом (турбопитательный насос)

ТТЦ – топливно-транспортный цех (электростанции)

т/у – турбоустановка

ТУ – турбоустановка; технические условия

ТХ – топливное хозяйство; тепловая характеристика

ТЦ – турбинный цех (электростанции)

ТЭК – топливно-энергетический комплекс

ТЭО – технико-экономическое обоснование (проекта)

ТЭР – топливно-энергетические ресурсы

ТЭС – тепловая электрическая станция

ТЭЦ – теплоэлектроцентраль

ТЭЦ-ЗИГМ – теплоэлектроцентраль заводского изготовления на

газомазутном топливе

ТЭЦ-ЗИТТ – теплоэлектроцентраль заводского изготовления на твердом

ФОРЭМ – федеральный оптовый рынок энергии и мощности (России)

ХВО – химводоочистка

ХОВ – химочищенная вода

ХХ – холостой ход (турбины)

ХЦ – химический цех (электростанции)

ЦВ – циркуляционная вода

ЦВД, ЦНД, ЦСД – цилиндр высокого, низкого, среднего давления (турбины)

ЦН – циркуляционный насос

ЦТАИ – цех тепловой автоматики и измерений (электростанции)

ЦЦР – цех централизованного ремонта (электростанции)

ЧВД, ЧНД, ЧСД – часть высокого, низкого, среднего давления (турбины)

ЭГ – электрогенератор

ЭДС – электродвижущая сила

ЭС – электрическая станция, Энергетическая стратегия (России)

ЭУ – эжектор уплотнений

ЭХ – энергетическая характеристика

ЭЦ – электроцех (электростанции)

ЯТ, ЯТЦ – ядерное топливо, ядерно-топливный цикл

Отрасль промышленности под названием «электроэнергетика» является составной частью более обширного понятия «топливно-энергетический комплекс», которая, согласно мнению некоторых ученых, может быть названа «верхним этажом» всей энергетики.

Роль электроэнергетики неоценима и она является одной из самых важных отраслей российской промышленности. Это обусловлено тем фактом, что снабжение электроэнергией требуется для нормального функционирования всего промышленного комплекса и всех видов деятельности человека. Развитие электроэнергетики по своим темпам должно опережать развитие прочих отраслей хозяйства для обеспечения должного количества энергии.

Деление электростанции России по типам

Ведущую роль в электроэнергетике России играют тепловые электростанции, доля которых в отрасли составляет 67%, что в числовом эквиваленте равно 358 электростанциям. При этом внутри теплоэнергетика делится на станции по виду потребляемого топлива. Первое место занимает природный газ, на долю которого приходится 71%, далее следует уголь с 27,5%, на третьем месте жидкое топливо (мазут) и альтернативные виды топлива, объем которых не превышает половины процента от общей массы.

Крупные тепловые электростанции России , как правило, размещаются в местах сосредоточения топлива, что позволяет снизить затраты на доставку. Также особенностью ТЭС является ориентированность на потребителя при одновременном применении топлива, обладающего высокой калорийностью. В качестве примера, можно привести станции, потребляющие в качестве топлива мазут. Как правило, они расположены в крупных нефтеперерабатывающих центрах.

Наряду с привычными ТЭЦ на территории России функционируют ГРЭС, что расшифровывается как государственная районная электрическая станция. Примечательно, что подобное название сохранилось со времен СССР. Слово «районная» в названии означает ориентированность станции на покрытие энергетических затрат определенной территории.

Крупнейшие тепловые электростанции России: список

Общая суммарная мощность вырабатываемой тепловыми электростанциями России энергии составляет более 140 млн. кВт*ч, при этом карта электростанции РФ четко дает возможность проследить наличие того или иного вида топлива.

Крупнейшие электростанции России по федеральным округам:

  1. Центральный:
    • Костромская ГРЭС, которая работает на мазуте;
    • Рязанская станция, основным топливом для которой является уголь;
    • Конаковская, которая может работать на газе и мазуте;
  2. Уральский:
    • Сургутская 1 и Сургутская 2. Станции, которые являются одними из самых крупных электростанций РФ. Обе они работаю на природном газе;
    • Рефтинская, функционирующая на угле и являющаяся одной из крупнейших электростанций на Урале ;
    • Троицкая, также работающая на угле;
    • Ириклинская, главным источником топлива для которой является мазут;
  3. Приволжский:
    • Заинская ГРЭС, работающая на мазуте;
  4. Сибирский ФО:
    • Назаровская ГРЭС, потребляющая в качестве топлива мазут;
  5. Южный:
    • Ставропольская, которая также может работать на совмещенном топливе в виде газа и мазута;
  6. Северо-Западный:
    • Киришская на мазуте.

Также в числе крупных электростанций Урала относится Березовская ГРЭС, которая использует в качестве главного топлива уголь, получаемый из Канско-Ачинского угольного бассейна.

Гидроэлектростанции


была бы не полной без упоминания гидроэлектростанций, которые занимают заслуженное второе место в электроэнергетики РФ. Главным преимуществом применения именно таких станций является использование ими в качестве источника энергии возобновляемые ресурсы, кроме того, подобные станции отличает простота эксплуатации. Самым богатым округом России по количеству ГЭС является Сибирь, благодаря наличию большого количества бурных рек. Использование воды в качестве источника для получения энергии позволяет при снижении уровня капиталовложений получить электроэнергию, которая в 5 раз дешевле, чем вырабатываемая электростанциями Европейской территории.

Которые вырабатывают энергию при помощи воды расположены на территории Ангаро-Енисейского каскада:

  1. Енисей: Саяно-Шушенская и Красноярская ГЭС;
  2. Ангара: Иркутская, Братская, Усть-Илимская.

При этом гидроэлектростанции нельзя назвать полностью экологичными, поскольку перегораживание рек приводит к значительному изменению рельефа местности, что сказывается на водных экосистемах.

Атомные электростанции

Третьими в списке электростанций России являются атомные станции, которые в качестве топлива используют силу атомной энергии, высвобождающуюся при соответствующей реакции. АЭС обладают большим количеством преимуществ, в числе которых:

  • большое содержание энергии в атомном топливе;
  • полное отсутствие выбросов в атмосферный воздух;
  • для выработки энергии не требуется участия кислорода.

При этом атомные станции относят к объектам повышенной опасности, поскольку при работе данного типа станции существует вероятность наступления техногенной катастрофы, которая может вызвать значительное загрязнение территории. Также к минусам использования АЭС относятся проблемы с захоронениями отходов функционирования станции. Наибольшая часть АЭС на территории России сконцентрирована в Центральном ФО (Курская, Смоленская, Калининская, Нововоронежская станции). Количество АЭС на Урале ограничивается одной Белоярской станцией. Также несколько атомных станций имеется в Северо-Западном и Приволжском федеральном округе.

Подведем итоги

Подводя итоги, можно отметить, что количество электростанций в России составляет 558 действующих объектов, что в достаточной степени покрывает потребность промышленности и населения в электроэнергии.


При этом наиболее дешевыми в эксплуатации являются ГЭС, а самую дешевую энергию вырабатывают АЭС, которые при этом остаются самыми опасными объектами. Факторами, оказывающими влияние на размещение станций, являются наличие сырья и нужды потребителей. Например, электростанции Урала занимают небольшую часть общего числа, поскольку плотность населения в данном регионе намного ниже, чем в центральных районах, которые считаются самыми «богатыми» по количеству ТЭЦ, АЭС и ГРЭС.

Россия является четвертым по величине производителем электроэнергии в мире после США, Китая и Японии. И на четвертом же месте - Россия по величине генерирующих мощностей. В то же время, российская промышленность и население страны испытывают дефицит электроэнергии. Так, ограничения в подаче электроэнергии были зафиксированы зимой 2006 года почти во всех энергосистемах страны.

Дефицит электроэнергии характеризуется следующими факторами: недостатком генерирующих мощностей в период пиковых нагрузок и отказами от подключения новых потребителей.

2. На контурной карте обозначьте: 1) районы размещения ТЭС, работающих на угле; 2) районы размещения ТЭС, работающих на газе и мазуте; 3) районы размещения крупнейших ГЭС; 4) районы размещения АЭС; 5) электростанции упомянутые в параграфе. Сделайте вывод о размещении электростанций разных типов.

3. Сравните ТЭС, ГЭС и АЭС по следующим параметрам: 1) стоимость строительства; 2) время строительства; 3) стоимость произведенной электроэнергии; 4) воздействие на окружающую среду.

ТЭС 1) сравнительно небольшая 2) сравнительно небольшое 3) дешевая электроэнергия (но дороже АЭС и ГЭС за счет потребляемого топлива) 4) используют невозобновляемые энергетические ресурсы, дают много твердых и газообразных отходов.

ГЭС 1) большая стоимость 2) долгие сроки (около 15-20 лет) 3) самая дешевая электроэнергия (если не учитывать дорогое строительство) 4) используют возобновляемые ресурсы. Затопление территории. Влияние на органический мир рек.

АЭС 1) большая стоимость 2) долгие сроки 3) Для большинства стран, в том числе и России, производство электроэнергии на АЭС не дороже, чем на пылеугольных и тем более газомазутных ТЭС. Особенно заметно преимущество АЭС в стоимости производимой электроэнергии во время так называемых энергетических кризисов, начавшихся с начала 70-х годов. 4) небезопасные, но более чистые, чем первые два варианта.

4. На контурной карте обозначьте электростанции России, использующие традиционные источники энергии. Приготовьте сообщение (5-7 предложений) об одной из этих электростанций.

Примечание: Кислогубская и Паужетская не используют традиционные источники энергии. Их отмечать на карте не нужно!

Белоярская АЭС им. И. В. Курчатова – первенец большой ядерной энергетики СССР. Белоярская АЭС – единственная в России атомная станция с энергоблоками разных типов.

Объем вырабатываемой Белоярской АЭС электроэнергии составляет порядка 10 % от общего объема электроэнергии Свердловской энергосистемы.

Станция сооружена в две очереди: первая очередь – энергоблоки № 1 и № 2 с реактором АМБ, вторая очередь – энергоблок № 3 с реактором БН-600. После 17 и 22 лет работы энергоблоки № 1 и № 2 были остановлены соответственно в 1981 и 1989 гг., сейчас они находятся в режиме длительной консервации с выгруженным из реактора топливом и соответствуют, по терминологии международных стандартов, 1-й стадии снятия с эксплуатации АЭС.

В настоящее время на Белоярской АЭС эксплуатируется два энергоблока - БН-600 и БН-800. Это крупнейшие в мире энергоблоки с реакторами на быстрых нейтронах. По показателям надежности и безопасности «быстрый» реактор входит в число лучших ядерных реакторов мира. Рассматривается возможность дальнейшего расширения Белоярской АЭС энергоблоком № 5 с быстрым реактором мощностью 1200 МВт – головного коммерческого энергоблока для серийного строительства. По итогам ежегодного конкурса Белоярская АЭС в 1994, 1995, 1997 и 2001 гг. удостаивалась звания «Лучшая АЭС России». Расстояние до города-спутника (г. Заречный) – 3 км; до областного центра (г. Екатеринбург) – 45 км.

5. Сформулируйте определение энергосистемы. Зачем создают энергосистемы?

Энергосистема – это группа электростанций разных типов, объединенных линиями электропередачи и управляемых из одного центра. Создание энергосистем повышает надежность обеспечения электроэнергией потребителей и позволяет передавать ее из района в район.