Примеры решения задач по статике. Пара сил, момент пары сил Пара сил с моментом м

1. Плоская система сходящихся сил

Система сходящихся сил находится в равновесии , когда алгебраические суммы проекций ее слагаемых на каждую из двух координатных осей равны нулю.

Проекция силы на ось.

Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной.

Проекция вектора считается положительной (+), если направление от начала к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (-), если направление от начала проекции к ее концу противоположно положительному направлению оси.

Если сила совпадает с положительным направлением оси, но угол будет тупой – тогда проекция силы на ось будет отрицательною.

Итак, проекция силы на ось координат равна произведению модуля силы на косинус или синус угла между вектором силы и положительным направлением оси.

Силу, расположенную на плоскости хОу, можно спроецировать на две координатные оси Ох и Оу:

; ; .

Проекция векторной суммы на ось.

Геометрическая сумма, или равнодействующая, этих сил

определяется замыкающей стороной силового многоугольника: ,

где п – число слагаемых векторов.

Итак, проекция векторной суммы или равнодействующей на какую-либо ось равна алгебраической сумме проекций слагаемых векторов на ту же ось.

2. Пара сил

Сумма проекций пары сил на ось х и на ось у равна нулю, поэтому пара сил не имеет равнодействующей. Несмотря на это тело под действием пары сил находится в равновесии.

Способность пары сил производить вращение определяется моментом пары , равным произведению силы на кратчайшее расстояние между линиями действия сил. Обозначим момент пары М , а кратчайшее расстояние между силами а , тогда абсолютное значение момента:

Кратчайшее расстояние между линиями действия сил называется – плечом пары , поэтому можно сказать, что момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

Момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения.

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой механическое состояние тела не изменяется, т.е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Еще одно свойство пары сил, которое является основой для сложения пар:

− не нарушая состояния тела, можно как угодно изменять модули сил и плечо пары, только бы момент пары оставался неизменным.

По определению пары сил эквивалентны, т.е. производят одинаковое действие, если их моменты равны.

Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М 1 = М 2 или F 1 a = F 2 b, то состояние тела от такой замены не нарушится.

Подобно силам пары можно складывать. Пара, заменяющая собой действие данных пар, называется результирующей. Действие пары сил полностью определяется ее моментом и направлением вращения. Исходя из этого, сложение пар производится алгебраическим суммированием их моментов, т.е. момент результирующей пары равен алгебраической сумме моментов составляющих пар.

Момент результирующей пары определится по формуле:

М= М 1 + М 2 +... + М п. =

М і ,

Где моменты пар, вращающие по часовой стрелке, принимаются положительными, а против часовой стрелки – отрицательными. На основании приведенного правила сложения пар устанавливается условие равновесия системы пар лежащих в одной плоскости, а именно: для равновесия системы пар необходимо и достаточно, чтобы момент результирующей пары равнялся нулю или чтобы алгебраическая сумма моментов пар равнялась нулю:

Момент силы относительно точки и оси.

Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы.

При закреплении тела в точке О сила

стремится поворачивать его вокруг этой точки. Точка О, относительно которой берется момент, называется центром момента , а длина перпендикуляра а – плечом относительно центра момента .

Момент силы

относительно О определяется произведением силы на плечо: .

Момент принято считать положительным, если сила стремится вращать тело по часовой стрелке, а отрицательным - против часовой стрелки. Между моментом пары и моментом силы есть одно существенное различие. Численное значение и направление момента пары сил не зависит от положения этой пары в плоскости. Значение и направление (знак) момента силы зависит от положения точки, относительно которой определяется момент.

Если сила расположена в плоскости, перпендикулярной к оси, момент этой силы определяется произведением ее величины на плечо

относительно точки пересечения оси и плоскости:

Следовательно, для определения момента силы относительно оси нужно спроектировать силу на плоскость, перпендикулярную оси, и найти момент проекции силы относительно точки пересечения оси с этой плоскостью.

3. Метод кинетостатики

Представим себе материальную точку массой т, движущуюся с ускорением а под действием какой-то системы активных и реактивных сил, равнодействующая которых равна F.

Воспользуемся одной из известных нам формул (основным уравнением динамики) для того, чтобы уравнения движения записать в форме уравнений равновесия (метод кинетостатики):

Перепишем это уравнение в следующем виде:

Выражение обозначается К ин и называется силой инерции:

Сила инерции есть вектор, равный произведению массы точки на ее ускорение и направленный в сторону, противоположную ускорению.

Это равенство, являющееся математическим выражением принципа, который носит имя французского ученого Даламбера (1717-1783), можно рассматривать как уравнение равновесия материальной точки. Следует подчеркнуть, что полученное равенство, хотя и названо уравнением равновесия, в действительности является видоизмененным уравнением движения материальной точки.

Принцип Даламбера формулируется гак: активные и реактивные силы, действующие на материальную точку, вместе с силами инерции образуют систему взаимно уравновешенных сил, удовлетворяющую всем условиям равновесия.

Следует помнить, что сила инерции приложена к рассматриваемой материальной точке условно, но для связи, вызывающей ускорение, она в определенном смысле является реальной. Обладая свойством инерции, всякое тело стремится сохранять свою скорость по модулю и направлению неизменной, в результате чего оно будет действовать на связь, вызывающую ускорение, с силой, равной силе инерции. В качестве примера действия сил инерции можно привести случаи разрушения маховиков при достижении ими критической угловой скорости. Во всяком вращающемся теле действуют силы инерции, так как каждая частица этого тела имеет ускорение, а соседние частицы являются для нее связями. Отметим, что весом тела называется сила, с которой тело вследствие притяжения Земли действует на опору (или подвес), удерживающую его от свободного падения. Если тело и опора неподвижны, то вес тела равен его силе тяжести.

4. Момент силы относительно точки

Рассмотрим гайку, которую затягивают гаечным ключом определенной длины, прикладывая к концу ключа мускульное усилие. Если взять гаечный ключ в несколько раз длиннее, то прилагая то же усилие, гайку можно затянуть значительно сильнее. Из этого следует, что одна и та же сила может оказывать различное вращательное действие. Вращательное действие силы характеризуется моментом силы.

Понятие момента силы относительно точки ввел в механику итальянский ученый и художник эпохи Возрождения Леонардо да Винчи (1452-1519).

Моментом силы относительно точки называется произведение модуля силы на ее плечо:

М 0 (¥) = РИ.

Точка, относительно которой берется момент, называется центром момента. Плечом силы относительно точки называется кратчайшее расстояние от центра момента до линии действия силы.

Пару сил в механике рассматривают как одно из основных понятий, наряду с понятием силы.

Пара сил система двух параллельных, противоположно направленных и равных по модулю сил, не лежащих на одной прямой.

Плоскость действия пары сил плоскость, в которой находятся линии действия сил.

Плечо пары сил кратчайшее расстояние (длина перпендикуляра) между линиями действия сил, составляющих пару сил.

На рис. 1.34 изображена пара сил, плоскость действия которой лежит в плоскости OXY системы отсчёта OXY.

Силы F 1 , F 2 образуют пару сил. F 1 = F 2 ; F 1 = – F 2 . Однако силы пары не уравновешиваются, так как они направлены не по одной прямой. Пара сил стремится произвести вращение тела, к которому она приложена. Действие пары сил на тело характеризуется её моментом.


Для количественной характеристики действия пары сил на тело и указания направления, в котором пара сил стремится вращать тело, вводится понятие алгебраического момента пары сил .

Алгебраический момент пары сил величина, равная взятому с соответствующим знаком произведению модуля одной из сил на её плечо.

M = ± F 1 ·h = ± F 2 ·h.

Алгебраический момент пары сил считают положительным, если пара сил стремится повернуть тело против вращения часовой стрелки, и отрицательным, если в сторону вращения часовой стрелки. В системе СИ момент пары сил измеряется в Н·м.


На рис. 1. 35 изображена пара сил (F 1 , F 2), линии действия которых лежат в плоскости OXY.

Момент пары сил векторная мера механического действия пары сил, равная моменту одной из сил пары относительно точки приложения другой силы.

Момент пары сил изображается вектором М . Вектор момента М пары сил (F 1 , F 2) направлен перпендикулярно к плоскости действия пары сил в сторону, откуда видно пару сил, стремящуюся вращать плоскость её действия в сторону, противоположную вращению часовой стрелки. Согласно определению (см. рис. 1.35), M ^ j , M ^ i , M = F 1 ×h = F 2 ·h. Таким образом, пара сил полностью характеризуется её моментом M .

Теорема . Пары сил, лежащие в одной плоскости, эквивалентны, если их алгебраические моменты численно равны и одинаковы по знаку.

Доказательство этой теоремы несложно и здесь оно не приводится.

Следствия из теоремы:

1.Пару сил, не изменяя её действия на тело, можно как угодно поворачивать и переносить в любое место плоскости её действия.

2.У пары сил можно изменять плечо и модуль силы, сохраняя при этом алгебраический момент пары и плоскость действия.


Суть теоремы и её следствий иллюстрируется рис. 1.36, на котором приведены пары сил с эквивалентными алгебраическими и векторными моментами. Плоскости действия пар сил совпадают с плоскостью YOZ.

Теорема . Пары сил в пространстве эквивалентны, если их моменты геометрически равны.

Доказательство этой теоремы также достаточно просто и здесь не приведено.

Из теорем о парах сил следует вывод: не изменяя действия пары сил на тело, пару сил можно переносить в любую плоскость, параллельную плоскости её действия, а также изменять её силу и плечо, сохраняя неизменными модуль и направление её момента.

Таким образом, вектор момента пары сил можно переносить в любую точку, то есть момент пары сил является свободным вектором .

Вектор момента пары сил определяет три элемента: положение плоскости действия пары; направление вращения; числовое значение (модуль) момента.

Отметим аналогию: если точку приложения вектора силы можно помещать где угодно на линии действия этой силы (скользящий вектор ), то векторный момент пары сил можно приложить в любой точке тела (свободный вектор ).

Как известно, сила – основная мера взаимодействия двух тел. Приложим к свободному телу две равные по величине, противоположно направленные силы, которые лежат на параллельных прямых (рис. 3.4). Главный вектор этой системы сил равен нулю, то есть поступательно двигаться это тело не будет. Будет ли оно находиться в равновесии? (Представьте, что вы приложили такую систему сил к водопроводному крану). Какое движение начнется??? Вращательное. То есть надо иметь меру вращательного действия такой системы двух сил:

3.Момент пары сил .

Для измерения совместного вращательного действия сил пары и относительно произвольной точки О (рис. 3.5) найдем сумму моментов этих сил относительно точки О , вспомнив формулу (3.2):

, (3.3)

или .

Этот вектор перпендикулярен к плоскости действия пары сил и направлен туда, откуда видно, что вращение тела парой происходит против хода часовой стрелки (рис.3.6).

Величина векторного момента (вектора – момента) пары сил, как модуль векторного произведения, равна где α – угол между векторами и (рис. 3.6). Обозначим , где d – плечо пары.

Тогда . (3.4)

Если пары сил размещены в одной плоскости, то величины их моментов находятся по формуле (3.4), а векторы этих моментов будут коллинеарные. В этом случае целесообразнее пользоваться не векторным понятием момента пары сил, а алгебраическим .

Парой сил называется система двух равных по модулю, параллельных и направленных в противоположные стороны сил, действующих на абс. твердое тело. Моментом пары наз. величина, равная взятому с соотв. знаком произведению модуля одной из сил пары на ее плечо (Понятие момента силы связано с точкой, относительно к-рой берется момент. Момент пары определяется только ее моментом и плечом; ни с какой точкой плоскости эта величина не связана). Св-ва: сумма моментов сил пары относительно точки не зависит от выбора точки и всегда равняется моменту пары, пара сил не имеет равнодействующей - нельзя уравновесить одной силой.

Сложение пар сил. Система пар, лежащих в одной плоскости, эквивалентна одной паре, лежащей в той же плоскости и имеющей момент, равный алгебраической сумме моментов слагаемых пар.

Сложение двух параллельных сил. Равнодействующая двух па­раллельных сил Р 1 и Р 2 (фиг.19, а и б), направленных в одну или в противоположные стороны, равна их алгебраической сумме

R= Р 1 ± Р 2 и делит отрезок между точками приложения сил, внут­ренним или внешним образом, на части, обратно пропорциональные этим силам:

AC/P 2 =BC/P 1 =AB/R

Это правило неприменимо для равных по величине и противоположных по направлению сил.

10Трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого.

Рис.34

Рассмотрим круглый цилиндрический каток радиуса R и веса , лежащий на горизонтальной шероховатой плоскости. Приложим к оси катка силу(рис. 34, а), меньшуюF пр. Тогда в точке А возникает сила трения , численно равнаяQ , которая будет препятствовать скольжению цилиндра по плоскости. Если считать нормальную реакцию тоже приложенной в точкеА , то она уравновесит силу , а силы иобразуют пару, вызывающую качение цилиндра. При такой схеме ка­чение должно начаться, как видим, под действием любой, сколь угодно малой силы.

Истинная же картина, как пока­зывает опыт, выглядит иначе. Объяс­няется это тем, что фактически, вслед­ствие деформаций тел, касание их происходит вдоль некоторой площадки АВ (рис. 34, б). При действии силы интенсивность давлений у краяА убывает, а у края В воз­растает. В результате реакция оказывается смещенной в сторону действия силы. С увеличениемэто смещение растет до некото­рой предельной величиныk . Таким образом, в предельном положении на каток будут действовать пара (,) с моментоми уравно­вешивающая ее пара () с моментомNk. Из равенства моментов находим или

Пока , каток находится в покое; приначинается качение.

Входящая в формулу линейная величина k называется коэф­фициентом трения качения. Измеряют величину k обычно в санти­метрах. Значение коэффициента k зависит от материала тел и опре­деляется опытным путем.

Коэффициент трения качения при качении в первом приближении можно считать не зависящим от угловой скорости качения катка и его скорости скольжения по плоскости.

Для вагонного колеса по рельсу k=0,5 мм.Рассмотрим движение ведомого колеса. Качение колеса начнется, когда выполнится условиеQR>M или Q>M max /R=kN/RСкольжение колеса начнется, когда выполнится условие Q>F max =fN.Обычно отношение и качение начинается раньше скольжения.Если, то колесо будет скользить по поверхности, без качения.

Отношение для большинства материалов значительно меньше статического коэффициента трения . Этим объясняетсято, что в технике, когда это возможно, стремятся заменить скольжение качением (колеса, катки, шариковые подшипники и т. п.).

трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого. Вследствие деформации тел их касание происходит вдоль площадки AB (рисунок 2.4, а), появляется распределенная система сил реакции (рисунок 2.4, б), которая может быть заменена силой и парой (рисунок 2.4, в).

Сила раскладывается на две составляющие – нормальную и силу трения скольжения. Пара сил называется моментом сопротивления качению M c .

Рисунок 2.4

При равновесии тела момент сопротивления качению определяется из условий равновесия системы сил. При этом установлено, что момент сопротивления принимает значения от нуля до максимального значения.

Максимальное значение момента сопротивления, соответствующее началу качения, определяется равенством

M c max = Nδ ,

где δ коэффициент трения качения , имеет размерность длины [м], зависит от материала контактирующих тел и геометрии зоны контакта.

Различают:

чистое качение – точка A (рисунок 2.4) не скользит по неподвижной плоскости;

качение со скольжением – наряду с вращением катка присутствует и проскальзывание в месте контакта, т.е. точка A движется по плоскости;

чистое скольжение – каток движется по плоскости, не имея вращения (см. п.2.1).

Для того, чтобы каток не скользил, необходимо условие F тр < F тр max ; чтобы каток не катился – M c < M c max = δN .

Также существует трение верчения – когда активные силы стремятся вращать тело вокруг нормали к общей касательной поверхности соприкосновения.

Парой сил (или просто парой) называется совокупность двух параллельных сил, равных по модулю, противоположных по направлению и приложенных в разных точках тела (рис. 30). Пару сил будем обозначать символом . Силы называются силами пары; плоскость, в которой лежат силы, называется плоскостью действия пары.

Кратчайшее расстояние между линиями действия сил пары называется плечом пары (длина h отрезка АВ на рис.

30). Так как силы можно перемещать вдоль их линий действия, в дальнейшем силы пары будем изображать приложенными к концам плеча пары.

Будем также пользоваться более простым обозначением пары в виде , не содержащем обозначений точек приложения сил.

Пара сил характеризует особый вид взаимодействия тел, который нельзя выразить одной силой. Поэтому в статике, наряду с силами, рассматриваются отдельно также пары сил с их специфическими свойствами, правилами сложения и условиями равновесия.

Изначально пара сил задается четырьмя векторами (рис. 31.)-двумя векторами сил пары и двумя радиусами-векторами их точек приложения. Возьмем какую-либо точку пространства в качестве центра моментов О и вычислим моменты сил пары относительно этого центра

Тогда предыдущее утверждение можно выразить и в такой форме: пара сил может быть задана векторами сил пары и моментами этих сил относительно произвольного центра О. Теперь зададимся вопросом: нельзя ли пару сил задавать по-другому, желательно меньшим числом определяющих элементов?

Геометрическая сумма векторов сил пары всегда равна нулю, поэтому она не может использоваться для характеристики пары. Вычислим сумму моментов сил пары относительно точки О:

В полученном результате обращают на себя внимание два обстоятельства.

1. В то время как сумма векторов сил пары всегда равна нулю, сумма моментов сил пары отлична от нуля.

2. Сумма моментов сил пары не зависит от выбора центра моментов- векторы зависящие от выбора точки О, выпали из окончательного выражения для искомой суммы.

Таким образом, сумма моментов сил пары оказывается зависящей только от элементов самой пары - плоскости действия пары, модуля сил и плеча пары. Это наводит на мысль использовать эту величину в качестве характеристики пары сил. В дальнейшем сумму моментов сил пары будем называть моментом этой пары. Поскольку момент пары не зависит от выбора центра моментов, то он является свободным вектором - его можно прикладывать в любой точке твердого тела, на которое действует данная пара сил.

Итак, на вопрос о том, можно ли задавать пару сил более простым способом, получен утвердительный ответ: пару сил можно характеризовать, задавая лишь один вектор - момент пары. Моментом пары сил называется свободный вектор , равный геометрической сумме моментов сил пары относительно произвольно выбранной точки О пространства

Здесь следует заметить, что приведенные рассуждения имеют скорее наводящий характер и не являются строгим доказательством только что сформулированного вывода. Однако в статике имеется ряд теорем, в которыхсделанный вывод получает строгое обоснование. С этими теоремами можно познакомиться по полным учебникам по теоретической механике.

Воспользовавшись произволом в выборе точки О в определении момента пары, можно прийти к более простому способу вычисления момента. Примем в качестве центра моментов точку приложения силы -F (точку В на рис. 31). Тогда можно написать

Здесь учтено, что так как сила -F проходит через точку В. Если за центр моментов принять точку А, в которой приложена сила F, то в нуль обращается момент силы F, и мы получаем

Это приводит к еще одному правилу для вычисления момента пары: момент пары сил равен моменту одной из сил пары относительно точки приложения другой силы.

Тем самым определение момента пары сводится к вычислению и построению момента силы относительно точки, подобно рассмотренному ранее (см. стр. 12).

В итоге приходим к следующему выводу: момент пары сил есть вектор, численно равный произведению модуля сил пары на плечо пары и направленный перпендикулярно плоскости действия пары в ту сторону, из которой "вращение" пары видно происходящим против движения часовой стрелки (правило буравчика); в качестве точки приложения момента пары может быть взята любая точка тела.

Алгебраическим моментом пары называется произведение модуля сил пары на плечо пары, взятое со знаком плюс, если пара "вращает" свою плоскость против движения часовой стрелки, и со знаком минус, если наоборот.

На рис. 32 изображена пара сил , действующая в плоскости диска радиуса R, установленного перпендикулярно к оси вращения. Плечо пары равно диаметру диска, модуль момента пары равен

Момент пары направлен перпендикулярно плоскости диска и может быть приложен в любой точке диска.

На рис. 33 показан аналогичный случай, но изображенный в плоской проекции. Здесь силы пары () направлены перпендикулярно плоскости чертежа (знаком изображаются векторы, направленные , знаком - от читателя). Момент пары по модулю равен , перпендикулярен плоскости диска и лежит в плоскости чертежа (точнее, может быть перенесен параллельно себе в плоскость чертежа).

Еще два примера построения момента пары содержатся на рис. 34. Модули моментов изображенных пар имеют значения:

Векторы-моменты пар имеют проекции:

Свойства пары сил

1. Можно изменять величину сил и плечо пары, оставляя без изменения величину момента и направление "вращения" сил пары.

2. Пару сил можно как угодно перемещать в своей плоскости действия.

3. Пару сил можно перемещать параллельно себе в любую плоскость, неизменно связанную с телом, к которому она приложена.

Перечисленные в этих свойствах действия не изменяют ни величину, ни направление момента пары, поэтому являются эквивалентными преобразованиями пары.

В приведенных выше примерах речь шла о построении момента по заданным элементам пары - плоскости действия, силам и плечу пары. Можно ставить и обратную задачу - построить пару сил по ее моменту. Пусть требуется построить пару сил по ее моменту М (рис. 35, а). Для этого строим плоскость П, перпендикулярную линии действия момента (рис. 35, б). Эта плоскость будет служить плоскостью действия пары. В этой плоскости располагаем две силы по следующему правилу. Направление сил выбирается так, чтобы из конца вектора-момента М силы были видны ориентированными против движения часовой стрелки. Величина сил и плечо пары могут быть любыми (свойство 1), но чтобы их произведение было равно модулю момента пары: .

Согласно свойству 3 плоскостью действия пары будет являться и любая другая плоскость , параллельная плоскости П.

В дальнейшем, имея дело с парами сил, мы будем указывать только их векторы-моменты и т.д., прибегая к построению самой пары лишь при необходимости.